
Jake Wright

Video Summarisation

Computer Science Tripos – Part II

Queens’ College

May 12, 2015

Proforma

Name: Jake Wright
College: Queens’ College
Project Title: Video Summarisation
Examination: Computer Science Tripos – Part II, June 2015
Word Count: 11,4361

Project Originator: Jake Wright
Supervisor: Tadas Baltrušaitis

Original Aims of the Project

The aim of this project was to compare the usefulness of a video summarisation technique
based on the change in colour histograms between frames with a technique based on the
optical flow field throughout the video. Additionally, the project aimed to compare a
summary presentation method that applied an importance threshold to the frames with
a method that created a fast-forward effect through the less important sections.

Work Completed

Both video summarisation algorithms were implemented and a program was written to
take an input video and produce a summary, presented using either the proposed threshold
strategy or the speedup strategy. A user study was carried out to evaluate the summaries’
usefulness. It was found that the optical flow algorithm outperformed the colour-based
method, and videos presented with the speedup strategy were more useful than those that
used the threshold strategy. The summaries were shown to always be more useful than
the original videos.

Special Difficulties

None.

1This word count was computed by detex diss.tex | tr -cd ’0-9A-Za-z \n’ | wc -w

i

Declaration

I, Jake Wright of Queens’ College, being a candidate for Part II of the Computer Sci-
ence Tripos, hereby declare that this dissertation and the work described in it are my
own work, unaided except as may be specified below, and that the dissertation does not
contain material that has already been used to any substantial extent for a comparable
purpose.

Signed

Date

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Previous Work . 2
1.3 Project Aims . 3

2 Preparation 5
2.1 The Problem . 5
2.2 Requirements Analysis . 7
2.3 Theoretical Background . 9

2.3.1 Importance Detection Strategies . 9
2.4 Video Files . 15

2.4.1 Video Coding Formats . 15
2.4.2 Output Write Strategies . 15

2.5 Web Platform . 16
2.6 Software Engineering . 16

2.6.1 Development Process . 16
2.6.2 Software Libraries . 17
2.6.3 Programming Languages . 17
2.6.4 Development Tools . 17
2.6.5 Version Control . 17

2.7 Summary . 18

3 Implementation 19
3.1 High-Level Program Structure . 19
3.2 Unit Testing . 20
3.3 Input and Analysis . 21

3.3.1 Metadata . 21
3.3.2 Video Reader . 23
3.3.3 Importance Detection Strategies . 24
3.3.4 Processors . 29
3.3.5 Processor Manager . 32

3.4 Output . 32
3.4.1 Output Write Strategies . 32
3.4.2 Video Writer . 33

iii

3.4.3 Output Manager . 33
3.5 Web Platform . 34
3.6 Summary . 36

4 Evaluation 37
4.1 Videos Used in Evaluation . 38
4.2 Manual Evaluation . 38
4.3 User Study . 40

4.3.1 Types of Video . 41
4.3.2 Types of Question . 42
4.3.3 Participant Recruitment . 42
4.3.4 Ethics . 43

4.4 Results . 43
4.4.1 Best Output Write Strategy . 43
4.4.2 Best Importance Detection Algorithm 44
4.4.3 Usefulness of the Summaries . 45

4.5 Threats to Validity . 46
4.6 Summary . 48

5 Conclusions 49
5.1 Achievements . 49
5.2 Future Work . 50
5.3 Final Remarks . 50

Bibliography 51

A User Study Results Aggregation Script 53

B User Study Questions 57
B.1 Bag Video . 57
B.2 Desk Video . 57
B.3 River Video . 57

C Project Proposal 59

iv

List of Figures

2.1 A representation of a video file made up of individual frames, each with an
importance. A subsequence generation phase with a threshold of 0.5 would
group the frames as shown. 6

2.2 The problem of video summarisation broken down into its fundamental
stages. 6

2.3 Two frames from a video and a section of their corresponding hue histograms. 10
2.4 Top: a pair of consecutive frames from a period in which nothing happens.

Bottom: a pair of consecutive frames from a period in which a person walks
past the camera. 13

3.1 High-level structure of the video summarisation program. 20
3.2 A flowchart showing the test-driven development cycle. 21
3.3 UML Class Diagram showing the aggregation between the objects that

are involved in the input and analysis section of the video summarisation
program. 22

3.4 UML activity diagram showing how the Video Reader linearly applies image
modifiers to the frames before returning them. 24

3.5 UML class diagram showing how the Strategy pattern was used to allow
summarisation algorithms to be interchangeable. 25

3.6 The approach taken to merge overlapping subsequences. Frame impor-
tances are set in a new metadata object as the average of the subsequence
importances in which the frame appeared. New subsequences are then
generated from the new metadata in the usual way. 31

3.7 UML Class Diagram showing the aggregation between the objects involved
in the output stage of the video summarisation tool. Note that only the
relevant properties and methods are displayed. 32

3.8 A comparison between the speed of a video with and without a threshold
on the importance. The threshold was advantageous because it is unlikely
that many frames would be assigned the maximal importance of 1, while
it is desirable to have sections of the video, during which an event occurs,
slowed down to normal speed. 34

3.9 Entity-relationship diagram showing the database structure used for the
back-end of the user study web-based platform. 35

3.10 User interface of the web platform developed for the user study. 35

v

vi

4.1 From left to right, representative frames from the bag video, the desk video,
and the river video. 38

4.2 The performance of each algorithm on the bag video compared to the stan-
dard set by the manual event identification. 39

4.3 The performance of each algorithm on the desk video compared to the
standard set by the manual event identification. 40

4.4 The performance of each algorithm on the river video compared to the
standard set by the manual event identification. 41

4.5 A snippet of my YouTube channel subscriber demographics, showing the
distribution of top geographies and gender. 43

4.6 Left: the improved response times when a video is summarised using the op-
tical flow importance detection algorithm and presented using the speedup
output write strategy. Right: The accuracy of respondents’ answers with
this summary type compared to the full un-summarised video. 47

Chapter 1

Introduction

1.1 Background

Since the advent of surveillance cameras, the rate at which video footage is collected has
continued to increase. With around 5 million Closed Circuit Television (CCTV) cameras
in the UK alone [22], it is becoming increasingly difficult to browse the video and retrieve
clips of interest. This means that CCTV footage is not always watched, events are missed,
and crimes are ignored.

As more businesses, home owners and governmental agencies turn to surveillance cameras
to protect their property and prevent crime [17], it is becoming more important to find
useful ways to review and archive the footage. Archiving is particularly troublesome for
an average home owner who may have very limited data storage facilities. A common
solution to the overwhelming storage requirements is to ‘multiplex’ the video streams and
combine the video from multiple cameras in a single video file or on a single tape [17].
The downsides of this are that the storage requirements are only reduced by a small factor
and the resolution of the video is reduced by the same factor, making identification of
subjects in the video more difficult.

Another attempt to overcome the problem is to create a time-lapse video by storing only
a subset of frames sampled at certain time intervals instead of recording every single video
frame from the camera. This reduces storage requirements and playback time. However,
identifying the actions taken by a subject in the video becomes significantly more difficult
because they may only appear in a single frame or not at all.

Video Summarisation is the process of reducing spatio-temporal redundancies in video [6].
This is useful because we can algorithmically scan through long videos to automatically
pick out areas of interest that might otherwise be difficult to find, thereby reducing the
playback time and the storage requirements but without reducing the resolution of the
video. The summarised footage is more practical in terms of storage requirements and
makes retrieval of events less labour intensive.

1

2 CHAPTER 1. INTRODUCTION

The benefits of such a system extend beyond CCTV footage and can be useful to those
working in the media industry, for example, choosing clips of long videos to show in news
broadcasts or finding the most exciting clips from a video recording of a sports game. Due
to the varying requirements of each use case, this project focused on CCTV footage.

1.2 Previous Work

The wide variety of applications of video summarisation has given rise to a large amount
of research in the past. I will briefly explore some previously investigated methods of
video summarisation before explaining the approach that was taken in this project.

Fundamentally, there are two types of video summaries [14]. First, a still-image summary
can be produced wherein a set of salient images is automatically extracted from the
video. This set of images can be viewed as a storyboard that summarises the events
that took place in the video. Another way is to produce a new (shorter) video instead
of still frames and it is the approach taken in this project. Although not as compact as
a small collection of images, it is easier for non-experts to understand, and preserves the
time-evolving dynamic nature of video content [16]. Note the distinction between a video
summarisation technique (the method used to extract the important information from a
video sequence) and a video summary (the way in which the important information is
presented).

For each type of video summarisation, there must be an algorithm that can extract the
most important frames or sections from a video sequence. In cases where it is desirable
to find the presence of a particular object, or find sections of the video in which a known
behaviour is exhibited, object detection and face recognition methods can be employed.
Given a high enough resolution, faces can be found and then compared to known suspects
or perhaps unauthorised vehicles can be identified entering a restricted area.

Video footage may also include auditory channels, which can be used to assist in the
summarisation. Even very simple analysis of such information can increase the quality
of the results. Some examples include finding the n highest audio peaks of the track and
selecting sections of the video centred on the peaks or detecting a particular type of sound
such as singing or applause and correlating those with important events [13]. Since this
project focuses on CCTV footage, which generally doesn’t include audio, these techniques
cannot be exploited.

A more advanced approach would be to analyse the speech in the video using speech
recognition and listen for spoken words from a dictionary of significant phrases [15]. The
practicality of such an approach depends on the context. Again, CCTV footage usu-
ally does not contain this kind of information and so alternate techniques needed to be
employed to summarise the video.

1.3. PROJECT AIMS 3

1.3 Project Aims

This project compares the usefulness of a video summarisation technique based on colour
change with a technique that uses optical flow. The advantages of two output presenta-
tion methods are also compared. The colour-based method is based on thresholding the
distance between colour histograms of each pair of consecutive frames [11]. The second
method uses the optical flow field throughout the video to detect the important sections
[1].

The term ‘useful’ is subjective and so a user study was used to draw the conclusion.
Participants were asked to watch either an original, un-summarised video, or a summary
produced by one of the algorithms, and then answer some quantitative questions. A
summary is regarded as useful if participants can correctly answer the questions and do
so in a shorter time than if they had only watched the original video. Chapter 4 presents
the results of the user study and the conclusions that were drawn.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

This chapter details the work that was undertaken before implementation of the video
summarisation tool began.

Section 2.1 begins by defining the problem to be solved and from this, the requirements
of the solution are derived in Section 2.2. Once the requirements have been defined, the
theory upon which the project is based is explored in Section 2.3. Section 2.4 discusses
video codecs and the output write strategies, followed by Section 2.5, which outlines
the web platform needed for the user study. Finally, Section 2.6 discusses the software
engineering principles that were applied throughout development.

2.1 The Problem

There are two problems to solve as a result of collecting an immense amount of video
footage from 24-hour surveillance systems. Firstly, playback of the collected footage is
too time consuming and often infeasible. Secondly, retrieval of specific events becomes
inconvenient, particularly when the video contains a high proportion of redundant frames.
Removing this redundancy using an automated technique is a practical way to resolve both
issues. This is more broadly known as video summarisation.

The problem of video summarisation consists of two sub-problems:

1. finding important sections in the input video sequence, and

2. representing these important sections in a summary video sequence.

To find important sections in the input video sequence, an importance detection phase
takes place. This phase identifies how important each frame is relative to every other
frame. Next, a subsequence generation phase thresholds the frame importances and groups
frames into subsequences. See Figure 2.1 for a graphical representation of this phase.
Finally, an output phase creates the new video that summarises the input video based on
the results of the preceding phases.

5

6 CHAPTER 2. PREPARATION

0.4 0.6 0.7 0.7 0.1 0.6 0.9 1.0

Video sequence

Subsequence 1 Subsequence 2

Figure 2.1: A representation of a video file made up of individual frames, each with an
importance. A subsequence generation phase with a threshold of 0.5 would group the
frames as shown.

Previous work has often included a phase to detect shot boundaries that are caused
by camera movements and scene changes. It is assumed, however, that there is little
or no camera motion in typical CCTV footage and therefore no requirement to include
this phase. Many cameras have the ability to pan, tilt and zoom but this motion is
slow, smooth and infrequent such that the results of the summarisation would not be
significantly impacted by these effects.

Input Video Sequence

Importance Detection

Subsequence Generation

Output

Summary Video Sequence

Figure 2.2: The problem of video summarisation broken down into its fundamental stages.

This basic structure, which can be seen in Figure 2.2, is later used as the foundation for
the software architecture. However, before designing and implementing each phase, it is
important to review what each phase should achieve. It is useful to have a formal and
consistent definition of a video sequence and its components so that a framework can be
unambiguously described.

Video Sequence A frame, f , is a matrix of pixels representing a still image. Let F
denote the set of all possible frames.

A video sequence, v ⊆ F , is a collection of these frames. Let V denote the set of all
possible video sequences.

2.2. REQUIREMENTS ANALYSIS 7

Define a subsequence, s ⊆ v, to be a set of consecutive frames in a video, v. Let Sv =

{s | s ⊆ v∧consecutive(s)} denote the set of all possible subsequences in a video, v.

Importance detection phase During this phase, every frame, f , in the input video
sequence, v, will be assigned a relative importance, p ∈ [0, 1]. This process will be
completed by an interchangeable detection strategy function, d. The type of this function
is described by

d : V → F → R (2.1.1)

In other words, given a video sequence, the detection strategy will return a mapping from
frames to importances.

Subsequence generation phase Given the input video sequence, v, and a mapping
from frames to importances, mf : F → R, as generated by the detection strategy, the
sequence generation phase will output a set of disjoint subsequences that are deemed
important according to some threshold, k.

The requirement for the subsequences to be disjoint is to prevent frames being duplicated
in the summary video as this would create unnecessary temporal redundancy.

Output phase During this phase, an output write strategy is used to determine how
the subsequences are written to a video file. That is, given a video, v, a set of subse-
quences, S, a mapping from frames to importances, mf , and a mapping from sequences
to importances, ms, output a summary sequence, vs ⊆ v, that best describes the input
video sequence in as few frames as possible.

This project aims to compare the usefulness of two detection strategies and two output
write strategies. Naturally, the term ‘useful’ is subjective in this context but this problem
is discussed in much greater detail in Chapter 4.

2.2 Requirements Analysis

Not all requirements are of equal importance so those that were essential to the success of
the project were prioritised. The MoSCoWmethod was used to help schedule development
work effectively.

According to A Guide to the Business Analysis Body of Knowledge [3], the MoSCoW
categories are defined as follows:

• Must: a requirement that must be satisfied in the final solution for the solution to
be considered a success

• Should: a high-priority item that should be included in the solution if it is possible

8 CHAPTER 2. PREPARATION

• Could: a requirement which is considered desirable but not necessary

• Won’t: a requirement that stakeholders have agreed will not be implemented in a
given release

Requirements that are categorised as Must will be labelled as M1, M2, and so on.

The first requirement is derived from the purpose of video summarisation.

Requirement M1. Summary video sequences must be shorter than the input video
sequence.

This could trivially be achieved by removing random frames from the video, so it is
necessary to define another requirement.

Requirement M2. The summary must preserve at least 75% of the important events in
a video while removing sections during which nothing happens.

This project focuses on CCTV footage for which a summary can make retrieval quicker.
In order to achieve this, the summary must be an accurate representation of the events
that took place in the original video sequence. To this end, the events must appear in
the same order in the summary as they did in the original video otherwise confusion will
arise when trying to seek to a particular event.

Requirement M3. Chronological consistency of events must be preserved in the sum-
mary sequence.

The purpose of the project is to compare two importance detection strategies and two
output write strategies. This gives the next requirements:

Requirement M4. Both the colour-based and optical flow importance detection strate-
gies should be implemented.

Requirement M5. Both the threshold output write strategy and the speedup output
write strategy should be implemented.

The testing of each importance detection strategy should not be limited by substandard
videos. To minimise storage requirements, it is unreasonable to expect CCTV footage
to be high-definition, but to properly compare the algorithms, there should be sufficient
detail in the videos.

Requirement M6. The sample videos that are collected for testing should be in colour
and have a resolution of at least 640× 360 pixels.

Due to the computational complexity of video summarisation, the summaries will not be
produced instantaneously. However, since CCTV footage records non-stop, the summaries
should be produced in real time or better, so that they can be streamed straight to disk.
This prevents needing extra storage to act as a buffer.

2.3. THEORETICAL BACKGROUND 9

Requirement S1. Summaries should be produced in real time or better.

A user interface for the video summarisation tool was proposed. This would create a
nicer user experience when summarising videos. However, for the purpose of comparing
video summarisation techniques, it was decided that this would not be a worthwhile
endeavour.

Requirement W1. An easy-to-use graphical user interface for the video summarisation
tool.

CCTV cameras are not always perfectly positioned so the footage may include areas in
which nothing happens, for example, the top section of the video may just be the sky.
It would be wasteful to spend time analysing the whole of each frame if it is known in
advance that a particular area need not be considered.

Requirement C1. The ability to ignore areas of video frames during analysis.

Evaluation of the usefulness of a summary video is non-trivial due to the subjective nature
of the task. To aid in evaluation, a user study should be performed. This should take the
form of a survey that can be completed online. To facilitate a large-scale user study, a
web platform should be produced.

Requirement S2. A web platform should enable a participant to complete a survey with
a minimal amount of overhead per respondent.

To enable future work on the project, the software that is built should be extensible.
It should be built such that components can be easily replaced and improved, and new
algorithms implemented without restructuring the software’s architecture.

Requirement S3. The software built should be extensible and have a modular design.

2.3 Theoretical Background

This section explores the theory that underlies the algorithms that were imple-
mented.

2.3.1 Importance Detection Strategies

This project compares two detection strategies: a method that analyses colour change,
and a method based on optical flow. I will describe each method in detail, which will
justify why they are suitable approaches to take.

10 CHAPTER 2. PREPARATION

Colour Change

This algorithm is based on the colour change between frames. For CCTV footage, it is
a reasonable assumption that the scene will remain static when there are no interesting
events taking place. In this case, each frame will be almost identical to the preceding
and succeeding frames. This can be measured by comparing the colour histograms of the
frames. Similarly, if significant events are taking place in the video footage, it can be
expected that the difference in colour between frames will be much greater. Figure 2.3
illustrates how a histogram changes between two frames. The distance between each pair
of histograms can be used to indicate the relative importance of each frame.

0 0.1 0.2 0.3

×10
5

0

0.5

1

1.5

2

0 0.1 0.2 0.3

×10
5

0

0.5

1

1.5

2

Figure 2.3: Two frames from a video and a section of their corresponding hue histograms.

Colour Histograms A colour histogram is obtained from a discrete colour space by
discretising the image colours and counting how many times each discrete colour occurs
in the image [24]. Discretising the images in this way as opposed to comparing pixel
values between frames directly will avoid problems caused by noise in the video—pixel
values will fluctuate slightly between frames even for a static scene, especially if the video
was recorded in low lighting conditions. A histogram for an image is relatively invariant
to rotation and translation about the normal [21] so unsteady video footage will not
drastically change the histograms for the individual frames.

Converting from RGB to HSV The input frames from the video file use the RGB
colour space, however, for the purpose of measuring the colour change between frames,
it is useful to convert to a colour space that separates chroma (colour information) from
luma (image intensity). It is only important to look at the change in colour and not
changes in luma. This will make the algorithm more robust to shadows and lighting

2.3. THEORETICAL BACKGROUND 11

changes [5] which is useful because a lighting change will usually not signify an important
event.

To this end, the first task is to convert each frame from RGB to HSV (hue-saturation-
value) which is a cylindrical-coordinate representation of points in the RGB model. The
HSV colour space was chosen because it fulfils the requirement of separating luma from
chroma, and the conversion between RGB and HSV is easy to compute. The two prop-
erties that are most important are hue and saturation, because these contain the colour
information, while value can be discarded in the analysis phase because the value is likely
to indicate a change in lighting, e.g. from daytime to night time.

The RGB values can be converted to HSV as follows [21]:

V ← max(R,G,B)

S ←

{
V−min(R,G,B)

V
if V 6= 0

0 otherwise

H ←

60(G−B)/V −min(R,G,B) if V = R

120 + 60(B −R)/V −min(R,G,B) if V = G

240 + 60(R−G)/V −min(R,G,B) if V = B

If H < 0 then H ← H + 360.

With a frame represented in the HSV colour space, a two-dimensional histogram can be
calculated from the hue and saturation channels by discretisation of the values into a
number of bins.

Histogram Comparison A method of comparing two colour histograms in the context
of computer vision was first introduced by Swain and Ballard [24] and later generalised
by Schiele and Crowley [20].

Three histogram comparison methods were considered and their results compared. The
formula for each method is taken from the OpenCV documentation. The first method is
histogram correlation, defined as

dcorrel(H1, H2) =

∑
i(H1(i)− H̄1)(H2(i)− H̄2)√∑

i(H1(i)− H̄1)2
∑

i(H2(i)− H̄2)2

where
H̄k =

1

N

∑
j

Hk(j)

and N is the total number of histogram bins. A perfect match is indicated by a score of
1 while a mismatch will give a score of −1.

Another histogram comparison formula is chi-squared [19],

12 CHAPTER 2. PREPARATION

χ2(H1, H2) =
∑
i

(H1(i)−H2(i))
2

H1(i)

Where a value of zero indicates a perfect match and a mismatch is unbounded. This
formula is derived from the χ2 test-statistic [23].

Finally, the Bhattacharyya distance is defined as

dBhattacharyya =

√√√√1−
∑

i

√
H1(i) ·H2(i)√∑

j H1(j) ·
∑

j H2(j)

where a perfect match gives a score of 0 and a mismatch gives a score of 1.

These methods were evaluated by comparing their performance in the sample videos. For
each video,

• two consecutive frames were taken from a period during which nothing happened,

• two consecutive frames were taken from a period with noticeable activity, and

• histograms were computed for each chosen frame.

For each method, the first two histograms were compared and the second two histograms
were compared. A histogram was also compared with itself to give the value for a perfect
match. The three values were then normalised such that the minimum value was mapped
to 0, the maximum value was mapped to 1 and the third value was scaled accordingly.

value =
value −minimum

maximum −minimum
(2.3.1)

For correlation, the values were reversed

value = 1− value (2.3.2)

so all three methods could be compared.

Ideally, the frame compared with itself would have a result of 0, indicating a perfect
match, the comparison between the frames in which nothing happened would be very
close to 0 (noise in the video causes the histograms to differ slightly) and the frames with
activity would give a result of 1, after the scaling.

The method chosen would be the one that was least susceptible to noise, indicated by
having the lowest normalised value for the comparison of frames with no activity.

Some example frames used for the test are shown in Figure 2.4 and the results are sum-
marised in Table 2.1.

χ2 was least susceptible to noise in the tests and was chosen as the histogram comparison
method to be used throughout the project. The software was built with a modular design
so that this algorithm could easily be replaced by another in the future.

2.3. THEORETICAL BACKGROUND 13

Comparison methods Same frame No activity Activity
Correlation 0.0 0.0625 1.0
Chi-Square 0.0 0.0565 1.0
Bhattacharyya distance 0.0 0.342 1.0

Table 2.1: The normalised results from using each histogram comparison method to
compare a frame with itself, two frames during which nothing happened, and two frames
with motion.

frame 120 frame 121

frame 550 frame 551

Figure 2.4: Top: a pair of consecutive frames from a period in which nothing happens.
Bottom: a pair of consecutive frames from a period in which a person walks past the
camera.

Optical Flow

The second video summarisation technique that will be explored is optical flow. Optical
flow is the pattern of motion observed by the viewer in a scene [4]. The idea of optical flow
was introduced by Gibson in 1950 [12] and a variety of algorithms have been developed
since [10].

The problem of computing optical flow is the problem of estimating pixel motion between
two frames. There are two key assumptions when calculating optical flow:

1. brightness constancy assumption, and

2. spatial smoothness.

The brightness constancy assumption comes from the observation that the intensity value

14 CHAPTER 2. PREPARATION

of a surface will remain the same between frames despite a position change [2]. Spatial
smoothness assumes that nearby pixels belong to the same surface and thus exhibit the
same motion.

Farnebäck Algorithm Farnebäck proposed a method of estimating motion between
two frames based on polynomial expansion and based on both the brightness constancy
and spatial smoothness assumptions.

A neighbourhood of pixels is approximated using a quadratic polynomial

f(x) ∼ xTAx + bTx + c

where A is a symmetric matrix, b is a vector, and c is a scalar. The values of these
coefficients are derived from a weighted least squares fit to the signal values in the pixel’s
neighbourhood. Solving for the translation of the polynomial between the frames provides
the optical flow.

Assume the signal can be represented by the quadratic polynomial

f1(x) = xTA1x+ bT
1 x+ c1 (2.3.3)

If the polynomial is translated by a global displacement d, then for non-singular A1,
we can solve for d. The following derivation is based on Farnebäck’s paper on motion
estimation [9].

Let fs(x) be the polynomial after a global displacement d,

f2(x) = f1(x− d)

= (x− d)TA1(x− d) + bT
1 (x− d) + c1

= xTA1x + (b1 − 2A1d)Tx + dTA1d− bT
1 d + c1

= xTA2x + bT
2 x + c2. (2.3.4)

Equating coefficients gives

A2 = A1, (2.3.5)

b2 = b1 − 2A1d, (2.3.6)

c2 = dTA1d− bT
1 d + c1. (2.3.7)

By equation 2.3.6,

d = −1

2
A−11 (b2 − b1). (2.3.8)

In practice, the global displacement d is replaced with a spatially varying displacement
field, d(x), and the global polynomial is replaced with local approximations. And, as
previously stated, the equation is not solved pointwise, but over a neighbourhood of
pixels.

2.4. VIDEO FILES 15

2.4 Video Files

To test and evaluate the project, a variety of video files was needed. Originally, the
possibility of using real CCTV footage was discussed, however, it was decided that this
would not be optimal for a number of reasons.

Firstly, there are privacy concerns involved. Secondly, CCTV footage tends to be of low
resolution and often is recorded in black and white. Ironically, this is due to limited storage
space which is one of the problems that video summarisation can solve. Nevertheless, these
constraints would limit the effectiveness of testing so it was decided that videos should
be collected manually. This has the following advantages:

1. videos can be in colour so the colour-based detection strategy can be tested, and

2. scenes can be engineered from an evaluative perspective.

To elaborate on that second point, it can be ensured that videos contain the necessary
features to fully exploit the algorithms’ strengths and weaknesses. For example, robustness
to changes in lighting can be tested by creating a video in which the brightness changes
but everything else remains the same.

2.4.1 Video Coding Formats

Motion-JPEG was chosen as the video codec to be used when writing new video files
because JPEG compression is computationally cheap [8] and the codec worked “out of
the box” with the installation of Windows 8 and OpenCV. Of course, codecs exist that
produce more compact video files (such as H.264) but I decided that it would have been
unproductive to install and experiment with such codecs. Despite unwieldy file sizes partly
motivating the project, efficient compression of the video files was not a requirement.

2.4.2 Output Write Strategies

While a fundamental part of this project is to compare the colour-based histogram com-
parison technique with the optical flow technique of video summarisation, the method used
to write the results to a new file also plays a key part in producing a useful summary.
Two output strategies were compared: a threshold-based strategy and a ‘speedup’-based
strategy.

Threshold-based Write Strategy This is the most simple method of output: given
a map of subsequences to importances, output each subsequence that has an impor-
tance greater than a predefined threshold, maintaining the frames’ original order from
the input video file. In other words, all frames below a threshold are removed and the
others are written to the output file. Essentially, this method discards frames that were

16 CHAPTER 2. PREPARATION

deemed unimportant and only retains the significant sections, as computed by the analysis
stage.

This method is easy to implement and produces the shortest summary possible by not in-
cluding superfluous frames. The downside is that the optimal threshold will vary between
videos. A more noticeable downside from the user’s perspective is that the resulting video
may lose semantic meaning and appear ‘choppy’.

Speedup Write Strategy Instead of cutting all sequences that fall below a threshold,
this strategy uses the frame importances to determine the playback speed of the summary.
The speed will be inversely proportional to the importance so that the most importance
sections are played at normal speed.

The idea behind this strategy is to maintain the context surrounding important sections of
video, but ‘fast-forward’ through them so not much time is wasted during playback.

To achieve requirement M1, the maximum speedup should be as high as possible, making
the output sequence as short as possible. If the maximum speedup is too high, however,
we would lose the benefits of this strategy over the threshold write strategy. A sample
video had its speed increased in steps until it became too fast to understand what was
happening. A maximum speedup of about 200× was found to be optimal.

2.5 Web Platform

The user study was carried out via a web platform. Participants could use the website
to watch a video, and then answer questions about its content. No particular research
was undergone before building the platform, but the requirements of the user study were
assessed before development began.

2.6 Software Engineering

2.6.1 Development Process

An agile software development method was adopted during development with test-driven
sprint cycles to reduce risk. It was expected that new requirements and challenges would
arise during implementation. A feature of the agile model is that testing is integrated
into the development cycle, which allows a rapid response to change.

Typically, unit tests would be written for each new feature or module before development
began. Once all of the unit tests successfully passed, the feature would be marked as
complete. Afterwards, the new feature would be reviewed and integration testing would
take place before starting the next sprint.

2.6. SOFTWARE ENGINEERING 17

2.6.2 Software Libraries

OpenCV OpenCV is a cross-platform, open source computer vision library. It is widely
used for computer vision applications and was chosen to be used in this project. It includes
functionality to compute image histograms and optical flow between two frames.

Boost Boost is a set of C++ libraries that provide features such as smart pointers,
optional return values, and function pointers with more features and a simpler syntax. The
use of these libraries improved development efficiency and helped to prevent bugs.

2.6.3 Programming Languages

The main project was written in C++ so that it could interface with the OpenCV library.
OpenCV also has Python and Java interfaces but I was unfamiliar with Python and was
advised against using the Java interface due to missing implementations of some OpenCV
functions.

The web platform was written using PHP, due to familiarity and an available Apache1

server with PHP installed that was used for hosting.

2.6.4 Development Tools

Originally, I had planned to use Xcode2 for development. The first two weeks of Michael-
mas were devoted to preliminary familiarisation with OpenCV. During this period, it was
noticed that reading and writing video files using the OS X implementation of OpenCV
was very slow. For this reason, the OS X implementation was abandoned in favour of the
Windows version.

Visual Studio3 was chosen as the IDE due to its popularity and thus good community
support, and a large feature set. Development was completed using Windows 8 in a virtual
machine.

2.6.5 Version Control

Git was chosen as the version control system due to existing familiarity with the com-
mands. A repository was hosted on Github4, which acted as a backup solution and allowed

1https://www.apache.org/
2https://developer.apple.com/xcode/
3http://www.visualstudio.com/
4http://github.com

18 CHAPTER 2. PREPARATION

progress to be shared with my director of studies and project supervisor. The Team Ex-
plorer feature of Visual Studio was used to manage commits and push them to the Github
service.

As a further precaution, incremental hourly backups were made of the project’s source
files and all related media. A second laptop was available throughout development in case
of any problems with the main machine, but this was never needed.

2.7 Summary

This chapter looked at the work that was undertaken before development began.

• Section 2.1 gave an overview of the project’s goals and formally described what the
project should achieve

• Section 2.2 set out the requirements using the MoSCoW method by which the
success of the project should be measured

• Section 2.3 looked at the underlying theory of the algorithms to be implemented,
including histogram comparison and dense optical flow.

• Section 2.4 discussed video codecs to justify the decisions that were made regarding
codec choice. It also looked at the output write strategies that were implemented
and compared.

• Section 2.5 gave an overview of the web platform that needed to be produced for
the user study.

• Finally, Section 2.6 described the software engineering techniques that were used
throughout development.

Chapter 3

Implementation

This chapter describes how the theories presented in Chapter 2 were implemented in
the project. The software engineering methods that were employed during development
are outlined and details of the modular structure of the program are given along with
the testing strategies used to ensure correct implementation of each module and of the
program as a whole.

3.1 High-Level Program Structure

A basic implementation of the project’s requirements only needs to run a single detection
strategy on the input video’s frames. This would be a very limited implementation so,
in the interest of extensibility, it was decided that the detection strategies should be
generalised to a processor. Multiple processors can be layered and run in order. Firstly,
this allows detection strategies to be combined to improve results, should this be tested in
the future. Secondly, it allows the subsequence generation phase to be modularised and
represented as processors too. A central processor manager handles the processors.

The high-level structure of this concept can be seen in Figure 3.1. The arrows show the
flow of control. A processor manager handles many processors, which are, in turn, given
an opportunity to process each frame of the video sequence. Frames are provided to each
processor through an abstraction, labelled as Video Reader in the figure. The output of
the processor manager is passed to the Output Manager, which uses the data to write the
new video sequence to an output file using the Video Writer abstraction.

At least one of the processors would be a frame importance detection strategy. This
is a processor that calculates a value for each frame indicating its relative importance
compared to all other frames. Consecutive frames with an importance value that exceeds
a specified threshold are then defined as subsequences. This subsequence generation step
takes place in a separate processor.

19

20 CHAPTER 3. IMPLEMENTATION

Begin

Processor #1

Processor #2

. . .

Processor #N

Processor Manager

Output Manager

Abstraction

Video Reader
input.mov

Video Writer
output.mov

Figure 3.1: High-level structure of the video summarisation program.

Each processor is linearly connected to the next through a common interface. Designing
each processor to do as few tasks as possible makes it easy to mix and combine various
implementations of each step. It also makes unit testing simpler which is important
because the final output of the video summarisation is hard to predict.

3.2 Unit Testing

A test-driven development process was used during implementation. Before a new feature
was implemented, a test would be written that would pass if the feature was imple-
mented successfully. This approach forces the requirements of each module to be fully
realised before code is written, thereby preventing oversights from wasting time and caus-
ing bugs.

After each new feature was implemented, all unit tests were run, which would happen
automatically upon building the project. The purpose of running all tests was to perform
regression testing, to make sure the new code didn’t introduce bugs elsewhere. If any
tests failed, the source of the bug could be immediately pinpointed to the newly added or
updated code. This development cycle is shown in Figure 3.2.

Integration testing took place at the end of each sprint cycle, to ensure that the program
as a whole executed as expected with the addition of the new module.

3.3. INPUT AND ANALYSIS 21

Write test

Write production
code

Run all
unit tests

Tests fail

Tests succeed

Figure 3.2: A flowchart showing the test-driven development cycle.

3.3 Input and Analysis

This section looks at the implementation details of the first part of the summarisation
process. This part of the program performs the following tasks:

1. read frames from the video file,

2. apply image modifiers to the frames, and

3. run each processor in order.

Figure 3.3 is a UML class diagram showing the relationship and interfaces of the classes
involved in this section of the program. The following subsections will describe the purpose
of the classes in further detail.

3.3.1 Metadata

The MetaData class encapsulates all of the information that is generated about a video
sequence during analysis. A metadata object is passed through the program with the flow
of control and is updated at each stage. The main purpose of the object is to store the
frame importances and the sequence ranges that are computed.

22 CHAPTER 3. IMPLEMENTATION

MetaData

- frameImportances
- sequences

+ getImportance(frame)
+ generateSequences(threshold)
+ getSequenceImportance(sequence)
+ normaliseFrameImportances()

ProcessorManager

- videoReader
- metaData
- processors

+ addProcessor(processor)
+ run()

VideoReader

- imageModifiers

+ addImageModifier()
+ read()

ImageModifier

+ run()

Processor

- importanceWriteStrategy

+ process(videoReader, metaData)

ImportanceWriteStrategy

+ calculateNewImportance
(currentImportance,
pendingImportance)

Figure 3.3: UML Class Diagram showing the aggregation between the objects that are
involved in the input and analysis section of the video summarisation program.

The theory presented in Chapter 2 suggests that an object like this should maintain
sets of frames. This possibility was considered but in the interest of efficiency, it was
decided to represent subsequences as a pair of numbers representing the first frame of the
subsequence and the final frame of the subsequence, respectively.

The mapping functions that were described throughout Chapter 2 were implemented using
the C++ map template. The C++ map stores an ordered set1 of key value pairs making
it ideal for the frame importance map and the subsequence importance map.

As well as storing a map of subsequence ranges to importances, the metadata object has
a public function to generate subsequences. This function can be called by processors to
generate the subsequences that will be used in the output stage. Algorithm 3.1 shows the
process in pseudocode. The actual implementation also takes into account the possibility
of not having an importance for the current frame and the possibility of the subsequence
already being defined, in which case, it is not overwritten because it may already have an
importance itself. All new subsequences are given an importance of negative infinity.

After a processor has set an importance for each frame, the values should be normalised
so that they are meaningful to a subsequent processor or the output phase. To allow code

1This is like the Java SortedMap rather than what one might expect from a map.

3.3. INPUT AND ANALYSIS 23

Algorithm 3.1 Subsequence Generation
a← nil . Used to hold the first frame in a subsequence
b← nil . Used to hold the last frame in a subsequence
for all frames f do

if a 6= nil . If currently mid-subsequence then
if frame importance > threshold then

b← f . Update end frame of current subsequence
else

Define range <a, b> to be a subsequence
a← nil
b← nil

end if
else

if frame importance > threshold then
a← f . Set start and end frame to start a new subsequence
b← f

end if
end if
If a and b denote a valid frame range after the loop, define this as a final subsequence

end for

reuse, the normalisation algorithm is implemented in the metadata class. The function is
called by the processor manager after each processor is run to ensure that each processor
receives normalised metadata.

3.3.2 Video Reader

The underlying methods to open a video file and read frames are provided by OpenCV.
The Facade design pattern was used to abstract the OpenCV methods away from the rest
of the program. The facade

• makes the OpenCV library easier to use by presenting convenient functions for the
required tasks,

• reduces dependencies between the program and the library by encapsulating
OpenCV methods, allowing the underlying implementation to be more easily
changed, and

• adds extra functionality to the video reader, i.e., the ability to add image modifiers.

A VideoReader object is instantiated with the file name of a video file. It is typically
then passed to the constructor of a ProcessorManager. The processor manager then
passes the video reader to each processor in turn, where it can be used to analyse the
frames.

24 CHAPTER 3. IMPLEMENTATION

Image Modifiers

An image modifier is applied to each frame after it is read from the video file but before
it is presented to the process requesting the frame. An image modifier can, for example,
crop the image, or carry out any processing task that will later aid the analysis. The
ability to crop the image partly satisfies requirement C1 by allowing parts of the image
to be ignored.

The process of applying the image modifiers to the frames from the video file is shown in
the UML activity diagram in figure 3.4.

Get video frame

Apply modifier

Return frame

[Remaining im-
age modifier(s)]

[No remaining
image modifiers]

Figure 3.4: UML activity diagram showing how the Video Reader linearly applies image
modifiers to the frames before returning them.

Resize image modifier For testing purposes, it was beneficial to run the the image
processing at high speed so a Resize image modifier was implemented to reduce the
resolution of video frames. OpenCV’s resize function was used for the implementation,
which can be seen in Listing 3.1.

3.3.3 Importance Detection Strategies

The two importance detection strategies described in Section 2.3 were implemented using
functions provided by OpenCV. It was unnecessary to reimplement the algorithms that
were already provided by the library. Each detection strategy was encapsulated in a
DetectionStrategy object with a common interface. Figure 3.5 shows how each detection
strategy inherits from a common base class. The process method takes a reference to a
video reader, a metadata object and an importance write strategy, which defines how
frame importances in the metadata object should be overwritten. This is discussed in
more detail in Section 3.3.4.

3.3. INPUT AND ANALYSIS 25

Listing 3.1: Resize image modifier implementation
void Res ize : : run (Frame ∗ frame)
{

// Extrac t the image matrix from the Frame o b j e c t
cv : : Mat mat = frame−>getFrame () ;

// Create a matrix to ho ld the r e s i z e d ve r s i on
cv : : Mat matResized ;

// Use OpenCV ’ s r e s i z e f unc t i on wi th the member v a r i a b l e factor_
cv : : r e s i z e (mat , matResized , cv : : S i z e () , factor_ , factor_) ;

// Set the Frame ’ s inner image matrix to the r e s i z e d ve r s i on
frame−>setFrame (matResized) ;

}

Processor

- importanceWriteStrategy

+ process(videoReader, metaData)

ImportanceDetector

- detectionStrategy

+ process(videoReader, metaData)

<<interface>>
DetectionStrategy

+ process(&VideoReader, &MetaData,
ImportanceWriteStrategy)

ColourChangeDetectionStrategy

+ process(&VideoReader, &MetaData,
ImportanceWriteStrategy)

OpticalFlowDetectionStrategy

+ process(&VideoReader, &MetaData,
ImportanceWriteStrategy)

Figure 3.5: UML class diagram showing how the Strategy pattern was used to allow
summarisation algorithms to be interchangeable.

Colour-Change Detection Strategy

This strategy calculates histograms for each frame and compares the difference between
each consecutive pair of histograms. The larger the difference, the larger the importance
that is assigned to the frames.

Firstly, to convert from the RGB colour space to HSV, the cv::cvtColor function was
used.

// Convert to HSV
cv : : cvtColor (frame , hsv , cv : :COLOR_BGR2HSV) ;

26 CHAPTER 3. IMPLEMENTATION

where frame is a matrix representing the current frame in RGB, hsv is a destination
matrix and COLOR_BGR2HSV is the colour space conversion code.

Next, the histograms are created from the new matrix

// Ca l cu l a t e the h is tograms f o r the HSV images
cv : : c a l cH i s t (&hsv , nImages , channels , cv : : Mat () , h i s t ,
dims , h i s t S i z e , ranges , uniform , accumulate) ;

where

• hsv is the image matrix

• nImages = 1 is the number of source images

• channels = {0, 1} is the set of channels to build the histogram from (the 0th and
1st channels being hue and saturation)

• cv::Mat() represents an empty mask

• dim = 2 is the number of dimensions in the histogram

• histSize = {50, 60} is a set containing the number of hue bins and saturation bins,
respectively

• ranges = {{0, 180}, {0, 256}} is a set of ranges for each dimension

• uniform = true is a flag to evenly space the bins, and

• accumulate = false makes sure the histogram is reset each time.

The histogram is normalised

// Normalise the his togram
cv : : normal ize (h i s t , h i s t , alpha , beta , cv : :NORM_MINMAX, dType , cv : : Mat ()) ;

where alpha = 0 and beta = 1 specify the range to which the histogram is normalised.
dType = −1 specifies that the output array should have the same type as the input array,
which, in this case, are the same array.

Finally, two histograms are compared—the current histogram and the previous frame’s
histogram.

// Compare the curren t his togram with the prev ious his togram
double comparison = cv : : compareHist (prevHist , h i s t , compareMethod) ;

compareMethod can be any of four histogram comparison methods implemented in
OpenCV. The χ2 comparison was used as described in Chapter 2.

This value is used as the frame importance for the latter frame of the two that were
compared. The first frame in the sequence gets an importance of zero by convention and
the importances are normalised to the range [0, 1].

3.3. INPUT AND ANALYSIS 27

Optical Flow Detection Strategy

This strategy calculates the dense optical flow for each pair of consecutive frames and
sums up the absolute values of each vector in the resulting motion matrix. This sum is
used to indicate the frame importance.

Firstly, the frames are converted to greyscale using the cvtColor function.

cv : : cvtColor (frame , gray , cv : :COLOR_BGR2GRAY) ;

The transformation is carried out using the formula2:

RGB[A] to grey: Y ← 0.299 ·R + 0.587 ·G+ 0.114 ·B (3.3.1)

Next, the calcOpticalFlowFarneback function is used to produce a matrix of flow vec-
tors.

// Ca l cu l a t e o p t i c a l f l ow us ing Farneback a l gor i thm
cv : : ca lcOptica lFlowFarneback (prevGray , gray , f low , pyrScale ,
l e v e l s , winSize , i t e r a t i o n s , polyN , polySigma , f l a g s) ;

The following list gives the definitions of each argument according to the OpenCV docu-
mentation3 and the values that were used.

• prevGray is the first frame, and

• gray is the second frame to calculate optical flow between

• flow is the destination matrix for the optical flow calculations

• pyrScale = 0.5 builds a classical pyramid where each layer is twice as small as the
previous one

• levels = 3 is the number of pyramid layers including the initial image

• winSize = 15 is the averaging window size

• iterations = 3 is the number of iterations performed at each level of the pyramid

• polyN = 5 is the size of the pixel neighbourhood used for the polynomial expansion

• polySigma = 1.2 is the standard deviation of the Gaussian used to smooth deriva-
tives, and

• flags = 0 tells the algorithm not to use any additional options.

The OpenCV function returns a matrix of flow vectors, which is then turned into a double
precision floating point number as shown in the following code listing.

2http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html
3http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html

28 CHAPTER 3. IMPLEMENTATION

Detection Strategy Input Expected output
Colour Two solid black frames Importance of zero assigned to

both
Colour A black frame followed by a

white frame
Importance of zero assigned to
both

Colour Two frames with maxi-
mum change in hue and
saturation HSV(0, 0, 0)

→ HSV(359◦, 100%, 100%)

An importance of 0 for the
first frame and a maximal im-
portance of 1 for the second
frame

Optical flow 250 identical frames followed
by 250 frames with a chequer-
board pattern with alternat-
ing black and white squares,
simulating motion.

An importance of 0 for the
first 250 frames and a nor-
malised importance of 1 for
the second 250 frames

Table 3.1: The unit tests for the importance detection strategies.

stat ic double calcAmountOfFlow (const cv : : Mat& f low)
{

double tota lF low = 0 ;
for (cv : : MatConstIterator_<cv : : Point2f> i t = f low . begin<cv : : Point2f >() ;
i t != f low . end<cv : : Point2f >() ; i t++)
{

// Compute the s i z e o f the vec t o r and add i t to the t o t a l f l ow
tota lF low += sqr t (pow((∗ i t) . x , 2) + pow((∗ i t) . y , 2)) ;

}

tota lF low = tota lF low / (f low . rows ∗ f l ow . c o l s) ;
return tota lF low ;

}

Detection Strategy Testing

Chapter 4 details the extensive evaluation that took place in order to test the performance
of each detection strategy. Nevertheless, during development it was useful to know that
the algorithms were performing correctly in the extreme cases. For this reason, a test
video reader object was written, which, instead of outputting frames from a real video
file, would output synthesised frames with particular properties. The unit tests for the
detection strategies are shown in Table 3.1.

3.3. INPUT AND ANALYSIS 29

3.3.4 Processors

A processor can be an importance detection strategy, perform a subsequence generation
step, or transform the metadata object in another way. Each processor has access to a
shared metadata object. This facilitates processors that modify the working range of the
sequence, merge overlapping sequences, and further refine the summarisation that has
taken place thus far. The implemented processors are:

• Trim Working Range

• Initialise Frame Importances

• Importance Detector

• Average Sequence Importance

• Remove Short Sequences

• Pad Sequences to Minimum Length

• Pad Sequences By Fixed Amount

• Merge Overlapping Sequences

Trim working range It may not be desirable to process the entire video sequence.
This processor was implemented to allow only a subsection of the video to be analysed
by adjusting the working range that is stored in the metadata object.

Initialise frame importances In general, this would be run before any frame impor-
tances are set, to initialise them all to zero. It is sometimes useful to initialise them
to another value, perhaps a [normalised] value of 1 so that frames are included by de-
fault.

Importance detector This is the encapsulating processor for the main analysis algo-
rithms. The Strategy design pattern was employed to allow the detection algorithm to be
interchangeable. The importance detector processor takes a DetectionStrategy object
as an argument.

Average sequence importance The metadata object can generate sequences from the
frame importances and a given threshold. This creates the task of generating sequence
importances. Using the processor-based structure, any number of approaches can be
implemented. The one that was chosen simply averages the importances of the frames
within a sequence.

∀s ∈ S.ms(s) =
1

|s|
∑
f∈s

mf (f) (3.3.2)

30 CHAPTER 3. IMPLEMENTATION

Remove short sequences It was found during early testing that the detection strate-
gies often produced anomalous frame importances—a single important frame surrounded
by frames of low importance. It was sensible to implement a processor that could discard
the short sequences that resulted from this.

Pad sequences to minimum length ‘Choppy’ video was expected from the threshold
write strategy since the video would jump with no transition between events. The speedup
write strategy was expected to diminish this effect however to achieve the desired reduction
in temporal redundancy, it was still necessary to totally disregard the subsequences of
lowest importance. This meant that under both write strategies, the resulting summary
sequence was often confusing to watch.

To alleviate this further, sequences were padded to conform to a minimum length (10-30
frames usually).

Algorithm 3.2 Pad sequences to minimum length
for all sequences s do

if length(s) < threshold then
padLower← true
while length(s) < threshold do

if s.firstFrame = 0 and s.lastFrame = N then
Break

else if s.firstFrame = 0 then
padLower← false

else if s.lastFrame = N then
padLower← true

end if
if padLower then

s.firstFrame← s.firstFrame− 1

else
s.lastFrame← s.lastFrame + 1

end if
end while

end if
end for

Pad sequences by fixed amount This processor was designed to retain semantic
meaning in the summary videos by including more context surrounding each ‘important’
event.

Merge overlapping sequences The previous two processors that extend the sequences
beyond what is defined by the frame importances causes the problem of overlapping
sequences. If sequences overlap, the frames end up being output multiple times, increasing

3.3. INPUT AND ANALYSIS 31

redundancy and confusing the chronological consistency of the events. It was therefore
necessary to implement a processor to merge overlapping sequences.

The approach taken was to iterate through each frame of each subsequence and, in a new
metadata object, set the importance of the corresponding frame to the importance of the
subsequence. If the frame appeared in more than one subsequence, the new importance
was the average of all subsequence importances. New subsequences could then be gen-
erated in the standard way on the new metadata object. This process is represented in
Figure 3.6.

0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.6

0.4

0.6

0.4875

Frames

Subsequences and
their importances

New subsequence

Temporary frame
importances

assigned

Existing
MetaData
object

New
MetaData
object

Figure 3.6: The approach taken to merge overlapping subsequences. Frame importances
are set in a new metadata object as the average of the subsequence importances in which
the frame appeared. New subsequences are then generated from the new metadata in the
usual way.

Overwriting Frame Importances

The importance detector processor is intended to overwrite frame importances. However,
the program’s structure was created such that processors can be layered, including de-
tection strategies. For example, it is possible to run an optical flow detection strategy
and then run a colour-based detection strategy and combine the results to get a better
summary. Therefore, it is necessary to allow a processor to do more than simply overwrite
an existing frame importance.

Detection strategies implement a process method that takes an
ImportanceWriteStrategy object as an argument (along with a video reader and
metadata object). This importance write strategy defines how a new importance should
be combined with an existing importance. The most simple strategy is to overwrite the
importance while the more useful strategy is to average the importances. Of course, any
number of strategies can be implemented to combine them, for example, multiplicatively
or additively.

This introduced the problem of combining a normalised frame importance with an un-
normalised importance. To solve this, it was necessary to implement a second frame
importance map in the MetaData class called pendingFrameImportance. A processor

32 CHAPTER 3. IMPLEMENTATION

uses it as a temporary workspace, then calls the normalise() method on it before using
the importance write strategy to update the actual frame importance map.

3.3.5 Processor Manager

The processor manager stores a vector of processors and runs them all sequentially, giv-
ing them access to the shared metadata object. After each processor is executed, the
processor manager normalises the frame importances in the metadata object by calling
MetaData::normaliseFrameImportances(). Afterwards, it returns the resulting meta-
data to the caller.

3.4 Output

This part of the program takes the metadata from the previous step and uses an output
write strategy to produce a summary video sequence.

OuputManager

- videoWriter
- writeStrategy

+ process(videoReader, metaData)

VideoWriter

+ write(frame)

WriteStrategy

+ framesToWrite(metaData)

Figure 3.7: UML Class Diagram showing the aggregation between the objects involved in
the output stage of the video summarisation tool. Note that only the relevant properties
and methods are displayed.

3.4.1 Output Write Strategies

The two output write strategies described in Section 2.4 were implemented. Each write
strategy extends a common abstract class, implementing a framesToWrite method. This
method takes the metadata and returns the set of frames that should be written to the
output video file.

3.4. OUTPUT 33

The threshold write strategy has a simple implementation that returns the set of frames
that are part of a subsequence and have an importance greater than a given thresh-
old.

The speedup write strategy was implemented using a variable counter to only write every
nth frame. This variable was computed from the importance of the current frame

counter = mf (f)× (1−maxSpeedup) +maxSpeedup

where mf (f) ∈ [0, 1] is the normalised importance of the current frame. Testing found
the output of such a naive implementation to be unsatisfactory. To produce a smoother
speed ramp, the code was changed such that the counter was averaged over 50 frames’
importances. Furthermore, a threshold was introduced so that more frames were slowed
down to the normal speed to make the important events easier to follow. The effect of
this threshold on the speed of the video can be seen more clearly in Figure 3.8. Finally,
the variable was rounded to an integer. The resulting algorithm is as follows.

Algorithm 3.3 Speedup Output Write Strategy
i← 0 . A counter incremented on each iteration
k ← 50 . The number of frames to average the speed over
X ← ∅ . The set of frames to write to the output file
for all subsequences s ∈ S do

for all frames f ∈ s do
if i mod round(counter) = 0 then

X ← X ∪ {f}
end if

newCounter ← mf (f)(1−maxSpeedup)

threshold
+ maxSpeedup

counter ← counter + newCounter−counter
k

i← i+ 1

end for
end for

3.4.2 Video Writer

As with the video reader, the video writing methods of OpenCV are encapsulated and
abstracted away from the rest of the program.

The video reading and writing functions work with Mat objects, which represent matrices.
Due to this being specific to OpenCV, this was also encapsulated within a custom Frame
class.

3.4.3 Output Manager

The output manager administers the whole output process by completing the tasks:

34 CHAPTER 3. IMPLEMENTATION

Frame importance
0 0.2 0.4 0.6 0.8 1

V
id

e
o

 s
p

e
e

d

0

1.0x

200x

Video speed against frame importance

Frame importance
0 threshold 1

V
id

e
o

 s
p

e
e

d

0

1.0x

200x

Speed against importance with threshold

Figure 3.8: A comparison between the speed of a video with and without a threshold on
the importance. The threshold was advantageous because it is unlikely that many frames
would be assigned the maximal importance of 1, while it is desirable to have sections of
the video, during which an event occurs, slowed down to normal speed.

1. run the output write strategy to get a set of frames to output,

2. read frames using the video reader, and

3. output frame if necessary using the video writer.

The output manager was implemented as a separate entity to the processor manager
so that it can be run using existing metadata, without having to run the processors
again.

3.5 Web Platform

The user study web platform was implemented as a PHP project with a MySQL database.
The database was the first part of the system to be designed. The relational schema, shown
in Figure 3.9, is in Boyce-Codd normal form [7]. Normalisation created an extensible,
update-centric design with no data duplication.

The website was built using Bootstrap4 as a front-end framework. The user interface can
be seen in Figure 3.10. Users’ inputs were sanitised to protect the system from MySQL
injection attacks and a CAPTCHA prevented unwanted form submissions by bots.

Once the user study was over, another PHP script was executed to aggregate and out-
put the results that were required for the evaluation. Part of this script is given in
Appendix A.

4http://getbootstrap.com

3.5. WEB PLATFORM 35

Response

ResponseID

VideoVersionID

TimeTaken

Comments

Video

VideoID

VideoTitle

SummaryType

SummaryTypeID

SummaryTypeName

Question

QuestionID

VideoID

QuestionText

QuestionTypeID

QuestionType

QuestionTypeID

QuestionTypeName

VideoVersion

VideoVersionID

SummaryTypeID

VideoID

URL

ResponseAnswer

ResponseAnswerID

ResponseID

QuestionID

Answer

Figure 3.9: Entity-relationship diagram showing the database structure used for the back-
end of the user study web-based platform.

Figure 3.10: User interface of the web platform developed for the user study.

36 CHAPTER 3. IMPLEMENTATION

3.6 Summary

This section detailed the implementation of the program that performed the video sum-
marisation and the web platform on which the user study was conducted.

• Section 3.1 gave a high-level overview of the structure of the program that was built.

• Section 3.2 described how continuous testing was integrated into the development
workflow including unit testing, integration testing and regression testing.

• The input and analysis parts of the video summarisation program were described in
Section 3.3. UML Class diagrams showed the relationship between the modules. A
UML activity diagram showed the process of applying image modifiers to the frames
and then each processor was explained.

• The part of the program that handles output was detailed in Section 3.4.

• Finally, details about the web platform, through which the user study was con-
ducted, were given in Section 3.5. Details include input sanitisation and an entity
relationship diagram showing the normalised database.

Chapter 4

Evaluation

The purpose of the project was to compare the usefulness of the colour-based video sum-
marisation algorithm with the optical flow algorithm. A secondary goal was to explore the
benefits of the speedup output write strategy over a simpler threshold-based method. To
strengthen the conclusions that were made, the project was evaluated in two ways:

• each summary was compared to a manual summary of the same video, and

• a user study was carried out to evaluate the usefulness of the summaries.

The manual evaluation was used to ensure that the salient frames in the input video were
being captured by the summarisation algorithms. However, this was very limited in terms
of assessing the usefulness of the summaries, due to the subjective nature of the question.
A user study was carried out to test the videos in scenarios that were designed to simulate
real life situations involving CCTV footage.

The evaluation was broken down into the following three questions:

1. Is the speedup output write strategy better than the threshold write strategy?

2. Is the optical flow detection algorithm better than the colour-based method?

3. Are the summaries that were produced more useful than the original, un-summarised
videos?

Recall from Chapter 1 that in the context of summarised videos, a useful summary was
defined to be one that enabled a user to answer questions about a video correctly and in
a shorter time than if the original video had been viewed instead.

The speedup write strategy was expected to perform better in the user study because
more context and meaning would be preserved in the output video. This would lead to
less confusion about which events were taking place thereby making it easer to answer
the questions. It was expected that under the threshold method, despite the videos being
shorter, participants would spend more time replaying regions of the video to understand
the story.

37

38 CHAPTER 4. EVALUATION

There was no initial evidence to suggest that the optical flow detection strategy would
outperform the colour-based strategy. This is what the project set out to determine. How-
ever, throughout development, testing found that the optical flow method was generally
better at capturing the salient frames without picking up noise.

4.1 Videos Used in Evaluation

Three videos from the test corpus were chosen to be used for both the manual evaluation
and the user study.

1. The bag video: a bag being placed on and removed from a table multiple times.

2. The desk video: a video of a desk being tidied, featuring significant lighting changes
during the video.

3. The river video: a video of the River Cam with punts and pedestrians passing
individually and occasionally two at a time.

Figure 4.1: From left to right, representative frames from the bag video, the desk video,
and the river video.

The bag video has very little background noise and very well defined events. The desk
video was chosen to be more difficult to analyse, due to lighting changes and sections with
low light. The river video was selected because of its large amount of noise from moving
trees surrounding the river, which would be more challenging for the algorithms.

4.2 Manual Evaluation

Each of the videos from the previous section had their important sections manually iden-
tified. Each video was then analysed by the colour-based algorithm and the optical flow
algorithm. Ideally, the important sections as identified by the algorithms would correlate
with the standard that was defined manually.

The results can be seen in Figures 4.2, 4.3, and 4.4. The important sections according
to the algorithms are overlayed on the manual identification. The manual study showed
that the algorithms were performing adequately with the test videos.

The first video was the easiest for the algorithms to analyse. It featured large amounts
of activity in the ‘important’ sections which contrasted with still footage everywhere

4.2. MANUAL EVALUATION 39

else. The subsequence importance is plotted against the frame number to show how the
algorithm output compares with the manual identification. Both algorithms performed
very well with this video, correctly identifying each event without any false positives.

Frame number
0 2000 4000 6000 8000 10000 12000 14000 16000

S
e
q
u
e
n

c
e
 i
m

p
o
rt

a
n

c
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy of colour-based method compared to manual identification

Manual identification
Colour-based method

Frame number
0 2000 4000 6000 8000 10000 12000 14000 16000

S
e
q
u
e
n
c
e
 i
m

p
o
rt

a
n
c
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy of optical flow method compared to manual identification

Manual identification
Optical flow method

Figure 4.2: The performance of each algorithm on the bag video compared to the standard
set by the manual event identification.

The second video had significantly more activity. The optical flow algorithm out-
performed the colour-based algorithm, which, in this case, was too conservative and
appeared to perform badly in the lower lighting conditions.

The third video was significantly more difficult due to large amounts of background noise
from trees and only small amounts of motion from punts moving slowly past the camera.
The algorithms were not expected to deal with this with a great amount of success.
Nevertheless, both algorithms managed to capture most of the important events. The
colour-based method did capture most things so this result is not significant. The optical

40 CHAPTER 4. EVALUATION

Frame number
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
q
u
e
n
c
e
 i
m

p
o
rt

a
n
c
e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Accuracy of colour-based method compared to manual identification

Manual identification
Colour-based method

Frame number
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e
q
u
e
n
c
e
 i
m

p
o
rt

a
n
c
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Accuracy of optical flow method compared to manual identification

Manual identification
Optical flow method

Figure 4.3: The performance of each algorithm on the desk video compared to the standard
set by the manual event identification.

flow algorithm, on the other hand, was a lot more accurate, producing few false positives
and only missing a single event.

4.3 User Study

Asking whether a summary of a video is useful is obviously subjective and would be a
limiting factor to any user study. With this in mind, the user study was designed so that
participants would comment on objective properties of the videos, giving quantitative
answers that can be compared.

4.3. USER STUDY 41

Frame number
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e

q
u

e
n

c
e

 i
m

p
o

rt
a

n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Accuracy of colour-based method compared to manual identification

Manual identification
Colour-based method

Frame number
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
e

q
u

e
n

c
e

 i
m

p
o

rt
a

n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Accuracy of optical flow method compared to manual identification

Manual identification
Optical flow method

Figure 4.4: The performance of each algorithm on the river video compared to the stan-
dard set by the manual event identification.

4.3.1 Types of Video

The same three videos that were described above were used in the user study. To compare
the colour-based method with the optical flow method, and the threshold output strategy
with the speedup strategy, all four combinations of each video were generated, along with
the original video. Table 4.1 shows all of the videos that were produced and the length
of each video.

A participant would watch one of the videos and then answer some questions about the
content of the video.

42 CHAPTER 4. EVALUATION

Summary Type Bag Desk River
Full video 10:17 12:10 12:23
Colour / threshold 1:14 0:48 1:59
Optical flow / threshold 1:04 3:29 0:44
Colour / speedup 0:19 1:23 0:21
Optical Flow / Speed 0:06 0:32 0:14

Table 4.1: The lengths in minutes of each video included in the user study.

4.3.2 Types of Question

Subjective questions were avoided as they would lead to inconclusive results. Instead,
questions with a restricted domain of answers were posed.

• Counting-based questions of the form “How many times did event X happen?”.

• Time-based questions of the form “at what time did event X happen?”. These videos
had a timestamp embedded within them for participants to quote.

• True or false questions of the form “Did event X happen?”.

The questions that were asked about each video are given in Appendix B.

Each participant was also given an optional comment box so that they could include any
more detailed or higher-level thoughts about the video that they just watched and the
questions that they answered. The purpose of this was to gain a general understanding
of how people were completing the questions and how satisfied they were with the video
and the survey process. For example, it could be used to explain that the whole video
was not watched but instead the participant manually skipped through the video. This
information helped when assessing the validity of the results and will be useful when
designing future user studies.

4.3.3 Participant Recruitment

Participants for the user study were recruited using a crowdsourcing approach. A link to
the website where users could take part was posted to Twitter and a video was posted to
my YouTube channel. Crowdsourcing allowed a large amount of data to be collected over
a short period of time and with minimal effort per participant.

The questions that participants were asked were not challenging and did not require
any specialist knowledge except an understanding of English. Figure 4.5 shows that my
YouTube subscribers are mostly from English speaking countries. It was not expected
for age or gender to affect the results, but the demographics show a reasonable gender
distribution nonetheless.

4.4. RESULTS 43

Figure 4.5: A snippet of my YouTube channel subscriber demographics, showing the
distribution of top geographies and gender.

4.3.4 Ethics

Nobody was personally contacted and asked to complete the survey, instead, volunteers
clicked the link themselves. Only the respondents’ answers and the time spent on the page
were recorded and only upon submission of the form. All questions were optional and
participants were free to abandon the survey at any time. The purpose of the survey was
made clear to participants both in the video and on the website itself. Participants were
made aware of what data was being collected and how it was going to be used. Approval
from the departmental ethics committee was granted before the user study began.

4.4 Results

First, the results from the user study were used to compare the output write strategies.
The results were then used to compare the importance detection algorithms. Finally, the
usefulness was compared to the results from the full-length videos.

4.4.1 Best Output Write Strategy

To determine the better output write strategy, the respondents’ average response times
were compared. The speedup method was expected to cause less confusion due to having
fewer jump cuts in the video and therefore produce lower average response times. The
results in Table 4.2 support this hypothesis, with the speedup method producing roughly
a 30% improvement in response times when compared with the threshold method.

44 CHAPTER 4. EVALUATION

Video Threshold/s Speedup/s Improvement
Bag 112 76.9 31.2%
Desk 193 139 28.2%
River 149 101 32.0%

Table 4.2: The average time taken by a respondent to watch a video and answer questions
about its content. The percentage improvement in response times for a video presented
using the speedup write strategy compared to the threshold strategy is shown.

Of course, improved response times are only useful if the respondents were still correctly
answering the questions. Table 4.3 summarises the accuracy with which participants
answered the questions, comparing the write strategies. For time-based questions, the
root-mean-squared error (RMSE) is given.

RMSE =

√√√√ 1

n

n∑
i=1

(Ŷ1 − Yi)2 (4.4.1)

where Ŷ is the vector of results from the user study, Y is the vector of correct answers
for the question, and n is the number of responses.

For the counting and boolean-based questions, the percentage of incorrect answers out of
the total number of responses is shown.

For the bag video, the results are very close, with the threshold strategy marginally taking
the lead. For the other two videos, the speedup strategy is a more clear winner. The river
video had poor results in the manual evaluation. Consequently, participants struggled
to correctly answer the questions, with 98% of users answering one question incorrectly
under the threshold write strategy. However, the speedup strategy clearly helped people to
understand the story of the video and make sense of the events that were happening.

Interestingly, in almost all cases, the summaries out-performed the full-length video. This
is probably due to users manually skipping through the longer videos and missing impor-
tant events. When investigating the average time taken to complete the exercises for the
full-length videos, it was found that users would usually finish in a time 40% faster than
the video’s actual length. This confirmed that users were skipping through the video
and essentially performing a manual on-the-fly summary. Of course, however, we see
that users performed better with the algorithmic summaries both in terms of speed and
accuracy.

4.4.2 Best Importance Detection Algorithm

Again, the average response times were compared to find out if users could complete the
exercise more quickly when the video had been summarised using the optical flow method.
Table 4.4 shows that this was true for two of the videos, however users were generally

4.4. RESULTS 45

Video Question Question Type Statistic Fu
ll
vi
de
o

T
hr
es
ho

ld

Sp
ee
du

p

Bag
1 Time-based RMSE 2.21 2.12 2.74
2 Counting % incorrect 5.56 3.21 4.26
3 True or false % incorrect 5.09 5.05 2.84

Desk
1 Time-based RMSE 0.351 4.73 1.75
2 Counting % incorrect 1.49 1.01 0
3 Time-based RMSE 0.671 1.32 1.31

River

1 Counting % incorrect 30.2 98.0 23.9
2 Counting % incorrect 20.8 30.0 13.0
3 Counting % incorrect 13.2 12.0 10.9
4 Counting % incorrect 18.9 9.0 13.0

Table 4.3: The user study results comparing the output write strategies’ effects on the
accuracy with which respondents answered questions about the videos. The accuracy for
time-based questions is given as the root-mean-squared error, while counting and boolean
questions’ results are given as the percentage of incorrect answers. For each question, the
best result is highlighted in bold.

Video Colour-based/s Optical Flow/s Improvement
Bag 105 89.6 14.6%
Desk 150 181 -20.7%
River 144 110 323.2%

Table 4.4: The average time taken by a respondent to watch a video and answer questions
about its content. The percentage improvement in response times for a video summarised
with the optical flow algorithm over the colour-based algorithm is shown.

slower for the third video. To gain a more complete picture, the accuracy of the responses
was analysed. Table 4.5 summarises the results.

There was no clear better algorithm, and most likely the colour-based method is better in
some cases while in others, optical flow would produce better results. It is worth noting
that questions 3 and 4 of the river video assessed the respondent’s overall sense of what
took place in the video, suggesting that with optical flow, users were more confident about
which events had taken place and which had not.

4.4.3 Usefulness of the Summaries

So far, the results have shown that the speedup output write strategy is more successful
than the threshold method, and optical flow, in most of the test cases, out-performed
the colour-based algorithm. It was investigated whether a video summarised with the

46 CHAPTER 4. EVALUATION

Video Question Question Type Statistic Fu
ll
vi
de
o

C
ol
ou

r-
ba

se
d

O
pt
ic
al

F
lo
w

Bag
1 Time-based RMSE 2.21 2.28 2.52
2 Counting % incorrect 5.56 3.59 3.66
3 True or false % incorrect 5.09 4.62 3.66

Desk
1 Time-based RMSE 0.351 1.75 5.09
2 Counting % incorrect 1.49 1.11 0
3 Time-based RMSE 0.671 0.476 1.72

River

1 Counting % incorrect 30.2 64.4 60.8
2 Counting % incorrect 20.8 17.8 25.5
3 Counting % incorrect 13.2 14.4 8.82
4 Counting % incorrect 18.9 14.4 7.84

Table 4.5: The user study results comparing the importance detection algorithms’ effects
on the accuracy with which respondents answered questions about the videos. The ac-
curacy for time-based questions is given as the root mean squared error, while counting
and boolean questions’ results are given as the percentage of incorrect answers. For each
question, the best result is highlighted in bold.

combination of optical flow and the speedup strategy is more useful than the original
un-summarised video.

Figure 4.6 shows the improved response times of this summary method and the accuracy
with which users answered the questions in comparison with the original un-summarised
videos. The response times are drastically shorter and in most cases, the accuracy is
higher. In the remaining cases, there was only a small decrease in accuracy—the mean
of each set of responses was always centred on the true value, which suggest that users
would be able to correctly answer the questions if the task was critical.

4.5 Threats to Validity

Some problems with the user study were identified that could affect the validity of the
results. Firstly, it was suspected and then confirmed that participants did not watch
the full videos before attempting the questions. Although this makes the comparisons
between the summary methods less fair, it makes the overall study more realistic (people
can and will skip through videos in real tasks), which can strengthen the conclusions
regarding usefulness.

The respondents were estimated to be mostly situated in English speaking countries,
suggesting that there would be no language barrier when answering the questions. This
was not the case for all participants, with one notable response questioning whether a

4.5. THREATS TO VALIDITY 47

Bag Desk River

100

200

300

400

500
Av

er
ag

e
R
es
po

ns
e
T
im

e

Full video Summary

V
id
eo

Q
ue
st
io
n

Q
ue
st
io
n

T
yp

e

Fu
ll
vi
de
o

Su
m
m
ar
y

Bag
1 Time 2.21 3.71
2 Count 5.56 4.17
3 Boolean 5.09 4.17

Desk
1 Time 0.351 1.40
2 Count 1.49 0
3 Time 0.671 1.70

River

1 Count 30.2 22.0
2 Count 20.8 16.0
3 Count 13.2 8.0
4 Count 18.9 10.0

Figure 4.6: Left: the improved response times when a video is summarised using the
optical flow importance detection algorithm and presented using the speedup output write
strategy. Right: The accuracy of respondents’ answers with this summary type compared
to the full un-summarised video.

punt was a ‘small ship’ and a pedestrian a ‘large ship’ ! Resulting erroneous data was
assumed not to be a problem for two reasons:

1. ‘Impossible’ answers were not aggregated. That is, answers that fell beyond the
possible range given the constraints of the video were discarded.

2. The number of responses was large (1123 responses) so errors from lack of under-
standing would not have impacted the results significantly.

Finally, the reliability of the results collected via crowdsourcing was unclear, particularly
since no reward was given to participants. Nowak and Rüger [18] showed that the results
from crowdsourcing are of comparable quality to those from experts. Furthermore, the
fact that domain checks were done on the collected data ensured that any malicious
attempts to sabotage the results were excluded.

48 CHAPTER 4. EVALUATION

4.6 Summary

This chapter presented the results of a manual evaluation of the algorithms’ performance
and the results of the user study that was conducted to assess the usefulness of each
importance detection strategy and each output write strategy.

• The videos that were selected to be used in the evaluation are described in
Section 4.1.

• Section 4.2 gives the results of the manual evaluation. It showed that the algorithms
were performing as expected with the test videos, capturing at least 75% of the
important events.

• The details of the user study are given in Section 4.3. The types of summary that
were included are described, as are the types of questions that were asked. Details
regarding participant recruitment and the ethics of the study are given.

• The results, given in Section 4.4, showed that the optical flow method outperformed
the colour-based method in most cases, and the speedup output write strategy
was more useful than the threshold strategy. Furthermore, it was shown that the
summaries were more useful to users than the original full-length videos.

• Finally, Section 4.5 discusses some potential threats to the validity of the results
and the actions taken to mitigate them.

Chapter 5

Conclusions

This project set out to compare the usefulness of two video summarisation techniques: a
method based on colour change and a method based on optical flow. It also compared
two methods of presenting the output: a threshold based method and a speedup method.
A video summarisation tool was built using C++ and summaries produced for three test
videos. A user study was carried out alongside a manual evaluation to assess the usefulness
of the summaries.

5.1 Achievements

The project’s implementation was successful because all of the must requirements set
out in Section 2.2 were met. Requirement M1 stated that summary sequences should be
shorter than the input sequence. This was the case for every video used for evaluation.
Table 4.1 shows that every summary was more than 70% shorter than the corresponding
original video.

The graphs in Section 4.2 show that all videos retained at least 75% of their important
events according to the standard set by the manual summary, thus achieving requirement
M2.

Chronological consistency was preserved in the outputs by merging the subsequences as
described in Section 3.3.4. This achieved requirement M3. Finally, both importance detec-
tion algorithms and both output write strategies were implemented, meeting requirements
M4 and M5.

The videos that were recorded for the evaluation were recorded in Full HD to allow the
algorithms to be tested without being limited by video resolution. This met requirement
M6. For the sake of performance, the resolution of each video was scaled down during
development.

The running time of the program when producing a summary obviously depends on the
processing power of the machine. On the machine used for development and testing, the

49

50 CHAPTER 5. CONCLUSIONS

summarises were produced faster than the input video would take to play in its entirety
thereby meeting requirement S1 of summarising in real-time or better.

The development of the web platform on which to conduct the user study was very
successful, allowing over 1000 responses to be submitted without any known technical
problems thus meeting requirement S2.

As described in Chapter 3, the project was built with a high level of modularity and
extensibility. The generalisation of the algorithms to processors meets requirement S3 by
making it possible to implement and compare more algorithms. The ability to add image
modifiers to the video reader made cropping possible, meeting requirement C1, however
this was not actually used during evaluation.

5.2 Future Work

The extensibility of the final program will make it easy to continue research in the area
of video summarisation. The combination of the two implemented importance detection
strategies can be tested without needing any further development. New summarisation
techniques can be implemented as additional processors and compared against the existing
algorithms.

A user interface, as proposed by requirement W1 could be built to enable easier sum-
marising of videos and make the system accessible to non-experts.

Future work could utilise extra information associated with videos such as auditory chan-
nels. As mentioned in Chapter 1, peaks in the audio waveform can be correlated with
important events. Speech recognition could also be employed to further understand and
interpret the scene.

5.3 Final Remarks

With the benefit of hindsight, a local threshold would have been a better way to mark
whether frames were important or not. Using a global threshold meant that anomalous
frame importances negatively effected the entire summary unless the importance threshold
was manually refined.

Despite this drawback, the optical flow method usually out-performed the colour-based
method for summarising videos, though the optimal algorithm was video dependant. A
strong conclusion was made regarding the effectiveness of the two output write strategies,
with the speedup method being at least as effective, and usually more so, in every tested
case. Overall, a summarised video was found to be consistently more useful than the
original full-length video when produced using optical flow and presented by speeding up
the less significant parts.

Bibliography

[1] Edoardo Ardizzone and Marco La Cascia. Video indexing using optical flow field. In
ICIP (3), pages 831–834. IEEE, 1996.

[2] Michael J. Black and P. Anandan. The robust estimation of multiple motions: Para-
metric and piecewise-smooth flow fields. Comput. Vis. Image Underst., 63(1):75–104,
January 1996.

[3] Kevin Brennan et al. A Guide to the Business Analysis Body of Knowledge. Inter-
national Institute of Business Analysis, 2009.

[4] Andrew Burton and John Radford. Thinking in Perspective: Critical Essays in the
Study of Thought Processes. Methuen, 1978.

[5] H.D. Cheng, X.H. Jiang, Y. Sun, and Jingli Wang. Color image segmentation: ad-
vances and prospects. Pattern Recognition, 34(12):2259 – 2281, 2001.

[6] Vikas Choudhary and Anil Kumar Tiwari. Surveillance video synopsis. In ICVGIP,
pages 207–212. IEEE, 2008.

[7] E. F. Codd. Recent investigations in relational data base systems. In IFIP Congress,
pages 1017–1021, 1974.

[8] Juanita Ellis, Charles Pursell, and Joy Rahman. Voice, Video, and Data Network
Convergence: Architecture and Design, From VoIP to Wireless. Academic Press,
September 2003.

[9] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion.
In Proceedings of the 13th Scandinavian Conference on Image Analysis, LNCS 2749,
pages 363–370, Gothenburg, Sweden, June-July 2003.

[10] David J. Fleet and Yair Weiss. Optical flow estimation, 2005.

[11] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang,
Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David
Steele, and Peter Yanker. Query by image and video content: The qbic system.
Computer, 28(9):23–32, September 1995.

[12] James Jerome Gibson. The Perception of the Visual World. Houghton Mifflin, 1950.

51

52 BIBLIOGRAPHY

[13] Wei Jiang, Courtenay Cotton, and A.C. Loui. Automatic consumer video summa-
rization by audio and visual analysis. In Multimedia and Expo (ICME), 2011 IEEE
International Conference on, pages 1–6, July 2011.

[14] Zaynab El Khattabi, Youness Tabii, and Abdelhamid Benkaddour. Video summa-
rization: Techniques and applications. International Journal of Computer, Control,
Quantum and Information Engineering, 9(4):11 – 16, 2015.

[15] Arthur G. Money and Harry W. Agius. Video summarisation: A conceptual frame-
work and survey of the state of the art. J. Visual Communication and Image Repre-
sentation, 19(2):121–143, 2008.

[16] Jeho Nam and Ahmed H. Tewfik. Dynamic video summarization and visualization.
In Proceedings of the Seventh ACM International Conference on Multimedia (Part
2), MULTIMEDIA ’99, pages 53–56, New York, NY, USA, 1999. ACM.

[17] Clive Norris. A review of the increased use of CCTV and video-surveillance for crime
prevention purposes in europe. Briefing Paper for Civil Liberties, Justice and Home
Affairs Committee (LIBE), European Parliament: Brussels, April 2009.

[18] Stefanie Nowak and Stefan Rüger. How reliable are annotations via crowdsourcing:
A study about inter-annotator agreement for multi-label image annotation. In Pro-
ceedings of the International Conference on Multimedia Information Retrieval, MIR
’10, pages 557–566, New York, NY, USA, 2010. ACM.

[19] Ofir Pele and Michael Werman. The quadratic-chi histogram distance family. In
Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision
- ECCV 2010, volume 6312 of Lecture Notes in Computer Science, pages 749–762.
Springer Berlin Heidelberg, 2010.

[20] Bernt Schiele and James L. Crowley. Object recognition using multidimensional
receptive field histograms. European Conference on Computer Vision, 1:610–619,
April 1996.

[21] Linda G. Shapiro and George C. Stockman. Computer Vision. Prentice Hall, 2001.

[22] Brian Sims. UK CCTV: Why we need more regulation. http://www.ifsecglobal.
com/uk-cctv-why-we-need-more-regulation/, 2013.

[23] G.W.A. Snedecor and W.G.A. Cochran. Statistical Methods. Iowa State University
Press, 1967.

[24] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11–32, November 1991.

http://www.ifsecglobal.com/uk-cctv-why-we-need-more-regulation/
http://www.ifsecglobal.com/uk-cctv-why-we-need-more-regulation/

Appendix A

User Study Results Aggregation
Script

// Inc lude the database c on f i gu r a t i on
r e qu i r e (" c on f i g . php") ;

// Connect to the database
$mysql i = new mysql i (DB_HOST, DB_USER, DB_PASSWORD, DB_NAME) ;

$query = "SELECT Response . ResponseID , SummaryType . SummaryTypeID ,
Video . VideoID , Video . VideoTit le , Response . TimeTaken , Response . Comments ,
Question . QuestionID , Question . QuestionText , Question . QuestionTypeID ,
QuestionType . QuestionTypeName , ResponseAnswer . Answer
FROM ResponseAnswer
LEFT JOIN Response ON ResponseAnswer . ResponseID=Response . ResponseID
LEFT JOIN VideoVersion
ON Response . VideoVersionID = VideoVersion . VideoVersionID
LEFT JOIN Question ON ResponseAnswer . QuestionID = Question . QuestionID
LEFT JOIN Video ON VideoVersion . VideoID = Video . VideoID
LEFT JOIN SummaryType
ON VideoVersion . SummaryTypeID = SummaryType . SummaryTypeID
LEFT JOIN QuestionType
ON Question . QuestionTypeID = QuestionType . QuestionTypeID ; " ;

// Execute the query
$ r e s u l t = $mysqli−>query ($query)

// Put the r e s u l t s i n to an array c a l l e d response
whi l e ($row = $re su l t−>fetch_assoc ())
{

// Get the ques t i on type
$questionTypeID = $row [’ QuestionTypeID ’] ;
$questionTypeName = $row [’QuestionTypeName ’] ;

// Get the Video
$videoID = $row [’ VideoID ’] ;
$v i d eoT i t l e = $row [’ VideoTit l e ’] ;

53

54 APPENDIX A. USER STUDY RESULTS AGGREGATION SCRIPT

// Get the Question
$quest ionID = $row [’ QuestionID ’] ;
$quest ionText = $row [’ QuestionText ’] ;

// Get the summary type
$summaryTypeID = $row [’SummaryTypeID ’] ;

// Get the time taken
$timeTaken = $row [’TimeTaken ’] ;

// Transform the answers i f nece s sa ry
switch ($questionTypeName) {

case ’Time ’ :
// I t e r p r e t the date and output as an i n t e g e r
$answer = date ("h" , s t r t o t ime ($answer)) ∗ 60

+ date (" i " , s t r t o t ime ($answer)) ;
break ;

case ’ Boolean ’ :
$answer = ($answer == "Yes" ? 1 : 0) ;
break ;

}

// Ignore out o f bound r e s u l t s
switch ($quest ionID) {

case 1 :
i f ($answer < 0 | | $answer > 10) cont inue 2 ;
e l s e break ;

case 2 :
i f ($answer < 0 | | $answer > 10) cont inue 2 ;
e l s e break ;

case 4 :
i f ($answer < 0 | | $answer > 10) cont inue 2 ;
e l s e break ;

case 5 :
i f ($answer < 180 | | $answer > 240) cont inue 2 ;
e l s e break ;

case 6 :
i f ($answer < 0 | | $answer > 6) cont inue 2 ;
e l s e break ;

case 8 :
i f ($answer < 684 | | $answer > 697) cont inue 2 ;
e l s e break ;

case 9 :
i f ($answer < 0 | | $answer > 5) cont inue 2 ;
e l s e break ;

case 10 :
i f ($answer < 684 | | $answer > 697) cont inue 2 ;
e l s e break ;

}

// Add the answer to the array
$answers [$videoID] [$quest ionID] [$summaryTypeID] [] = $answer ;

55

// Add the video to the video array
$v ideos [$videoID] = $v id eoT i t l e ;

// Add the ques t i on to a ques t i on array
$que s t i on s [$videoID] [$quest ionID] = [

"QuestionText " => $quest ionText ,
"QuestionTypeName" => $questionTypeName

] ;

// Add to the respondent array
$respondents [$videoID] [$summaryTypeID] [] = $timeTaken ;

}

// Build a nested array o f re sponse answers
f o r each ($v ideos as $videoID => $v id eoT i t l e)
{

$quest ionsForVideo = [] ;
f o r each ($que s t i on s [$videoID] as $quest ionID => $quest ion)
{

$quest ionsForVideo [$quest ionID] = [
" Quest ionIn fo " => $quest ion ,
"Answers" => $answers [$videoID] [$quest ionID]

] ;
}

$responseAnswers [$videoID] = [
" VideoTit l e " => $v ideoTi t l e ,
"Quest ions " => $quest ionsForVideo

] ;
}

// Returns the percentage o f c o r r e c t answers
func t i on pe r c en tag e In co r r e c t ($array , $correctAnswer)
{

f o r ($ i =0, $ l a s t=count ($array) , $ i n c o r r e c t =0; $i<$ l a s t ; $ i++)
i f ($array [$ i] != $correctAnswer) $ i n c o r r e c t++;

return round (100 ∗ $ i n c o r r e c t / (count ($array)) , 3) ;
}

// Returns the root−squred−mean e r r o r
func t i on RMSE(array $a , $ac tua l) {

$n = count ($a) ;
$carry = 0 . 0 ;
f o r each ($a as $va l) {

$d = ((double) $va l) − $actua l ;
$carry += $d ∗ $d ;

} ;
r e turn round (sq r t ($carry / $n) , 3) ;

}

// Returns the average o f the input array
func t i on averageArray ($array)

56 APPENDIX A. USER STUDY RESULTS AGGREGATION SCRIPT

{
return array_sum($array) / count ($array) ;

}

// Returns the percentage improvement o f x2 over x1
func t i on percentageImprovement ($x1 , $x2)
{

re turn round (100 ∗ (1 − ($x2 / $x1)) , 3) ;
}
?>

Appendix B

User Study Questions

B.1 Bag Video

1. At what time was the bag first taken from the table?

2. How many times is the bag put down onto the table?

3. Were any other items placed on the table?

B.2 Desk Video

1. At what time was the green cup removed from the desk?

2. How many people were involved in tidying the desk?

3. At what time was a sheet of paper placed into a green ring binder?

B.3 River Video

1. How many punts go past?

2. How many pedestrians go past?

3. Was there a dog visible at any point in time?

4. What is the maximum number of punts visible at any one time?

57

58 APPENDIX B. USER STUDY QUESTIONS

Appendix C

Project Proposal

59

Computer Science Project Proposal
Video Summarisation

Jake Wright, Queens’ College
Originator: Jake Wright

May 12, 2015

2 APPENDIX C. PROJECT PROPOSAL

Introduction, The Problem To Be Addressed

Due to advancements in video recording and storage technologies, there is an increasing
amount of raw, unedited video footage, particularly from sources such as CCTV cameras
and dashboard cameras in vehicles. Editing all of this video or finding particular events of
interest is tedious and time consuming, especially when dealing with surveillance footage
that is continuously recording.

During my project, I will create a system that will, when given an input video, auto-
matically produce a shorter video that summarises the original one. This will allow the
uneventful video footage to be ignored, saving time when reviewing the video and poten-
tially saving storage space if the summarisation is sufficient for archival purposes. My
project will focus on video footage where the camera remains stationary as this is the
most common scenario for surveillance footage.

I will compare and contrast at least two different methods of summarisation. Firstly, I
will implement an approach that analyses and compares the colour histograms of frames.
Video segments will be regarded as important if the difference in colour between the
neighbouring segment exceeds a specified threshold.

Secondly, I will explore approaches based on motion. With this method, video segments
with the most motion could be included in the summary, for example. Further methods of
analysis will be investigated as possible extensions to the project. Various combinations
of the algorithms will also be tried and evaluated based on their performance both in
terms of time and accuracy.

Starting Point

My project will utilise the OpenCV software library as it already provides efficient im-
plementations of useful computer vision algorithms that cover many areas, for example,
motion tracking and histogram computation. This means I will not need to spend exten-
sive amounts of time building systems to perform mathematical analysis of video frames.
OpenCV has a C++ interface so, being a language I have some prior experience with,
this the most suitable language for my project. There is existing work in the field of video
summarisation, allowing me to research various approaches to the problem [1].

Resources Required

I will use my own machine for the project and write the code using software that I already
have. If this should fail, I will be able to continue my work on an MCS machine. All
files associated with the project will be backed up using an hourly, incremental backup
system. I will also use github for version control. The video footage necessary for the

WORK TO BE DONE 3

project will be captured manually, as planned in the timeline. I have existing experience
in this area and a range of cameras that I can use. If this should fail, I have access to
further equipment within college. Similarly to the project files, any video files that are
used in the project will be backed up.

Work to be done

The project can be broken down into the following sections:

1. Collect sample video footage that can be used to test and evaluate the summarisation
process. The video will be captured manually using cameras that I already have.
Video from various environments will be required to fully test the performance of
the algorithms. I plan to collect sample footage from locations including my college
bedroom, a view of the river from a window and the DTG corridor in the computer
lab.

2. Work with OpenCV to implement a working method of processing and outputting
video files.

3. Implement procedures to analyse properties of the video such as colour histograms
and optical flow between frames. Based on the success of these methods, further
algorithms may be implemented such as analysing shape-based features. Many
options are presented by Hu et al. [2].

4. Create an algorithm to determine the importance of each segment of video and
combine those that are considered most important. The task of combining the most
important segments of video is also non-trivial and must be investigated further.
Ideally, the resulting video will be smooth to watch and the progression of time will
be visible to the user. Transitions or interpolation between frames of non-contiguous
sections or speeding up of unimportant sections are possible ways of achieving this
goal.

5. Evaluate the success of the project by conducting a user study to compare the
summarised video with the original video. The project can also be evaluated by
comparing the results to a manual summarisation and finally by testing the algo-
rithmic performance.

Success Criterion for the Main Result

The most simple criterion for the success of my project would be to see whether or not it
was capable of producing a shorter version of an original video. This, however, would not
be a particularly useful metric in any real world application. For this reason, the success
of my project will be based on how well the algorithms perform when given a video to

4 APPENDIX C. PROJECT PROPOSAL

summarise. The goal is not necessarily to build a tool that achieves video summarisation
but to compare the algorithms’ performance.

A user study will be performed during which participants will be given a chance to watch
the original, unedited video, followed by the shorter, summarised version. While watching
each one, they will be asked specific, quantitative questions about the video. These could
include questions like “At what time was the bag removed from the table?” or “How many
times did person X enter the scene”. The user’s ability to correctly answer the questions
and the time it takes them to do so will be used to measure the successfulness of the
algorithms.

Furthermore, the effectiveness of the summarisation algorithms will be measured by car-
rying out the described user study on videos with varying degrees of difficulty in the envi-
ronments. “Simple” videos would be ones that are mostly static with areas of importance
differing significantly from the uneventful sections. A more difficult video for the program
to analyse would have lots of noise, for example, moving trees in the background.

The user study will be carried out using two methods. Firstly, I will invite a small number
of participants to view the two videos on my machine, while I supervise the process. This
will give me reliable but limited results. To gain a higher number of results, and thus aid in
statistical analysis, I will invite remote users to complete the same survey after reviewing
two videos, but they will do so on their own machines, unsupervised. Of course, this
creates the risk that they will not honestly answer the questions and so conclusions based
upon these results will be made with caution.

To allow users to complete the evaulation on their own machines, I will create a web
interface to allow the users to firstly watch the videos, and then answer questions. I have
lots of experience in web development and online video. This simple interface will be
hosted online and not take a significant amount of time to complete.

Finally, if there is insufficient time for the user study, or I cannot find enough participants,
the project can be evaluated also by comparing the results of the automatic summarisa-
tion with a “manual” summarisation. This will involve a person identifying the important
events in a video and then finding how closely the automatic summary matches the ex-
pected outcome.

Possible Extensions

A possible extension to the project would be to create an easy-to-use user interface and
use this to add extra functionality to the system. For example, it could alllow particular
areas of the video to be ignored during analysis. This could be useful if, for instance, there
is a constantly changing background like cars in a street, but the user is not interested in
that section of the video. They could select this portion and have it not considered when
summarising the video.

TIMETABLE: WORKPLAN AND MILESTONES TO BE ACHIEVED. 5

As mentioned previously, further extensions would be to implement and compare more
algorithms that can summarise the video.

Timetable: Workplan and Milestones to be achieved.

1. Michaelmas weeks 2-4 Learn how to use OpenCV and research previous work in
the area of video summarisation [1, 2]. The goal with OpenCV is to be able to read
and process video files. Deadline: Wednesday 5th November.

2. Michaelmas week 5 Collect test footage to use throughout the development and
evaluation of the project. As discussed previously, this footage will be recorded
manually in a variety of locations, including Queens’ college and the computer lab.
I will seek appropriate permission before conducting any filming that will involve
others. Deadline: Wednesday 12th November.

3. Michaelmas week 6 Experiment with creating smooth video by comparing the
results of cutting out segments, transitioning between segments, and speeding up
sections of the video. Areas of interest at this stage will be defined manually so that
code can be written to output the summary. Deadline: Wednesday 19th November.

4. Michaelmas weeks 7-8 Start implementation of project. A colour-based method
will be implemented first, followed by a contrasting motion based method [2]. Dead-
line: Wednesday 3rd December.

5. Michaelmas vacation Finish the implementation of the two main algorithms and
then compare the performance of each, and explore combinations of each technique.
I will then decide, by comparing the results with a manual summary, which option
is the most effective and use this for the user study. The online review system will
also be created towards the end of the vacation. Deadline: Wednesday 7th January.

6. Lent weeks 0-2 Write progress report and begin evaluation by inviting the first
participants to review the videos. Videos collected in week 5 will be summarised
using the system completed over the vacation. Deadline: Wednesday 28th January.

7. Lent weeks 3-5 Continue user evaluation of completed project. Since the evalu-
ation will involve the user watching at least one long, un-summarised video, I will
need to allow plenty of time for the study because participants cannot be expected
to do this immediately. Deadline: Wednesday 18th February.

8. Lent weeks 6-8 Complete and collect feedback from evaluation. The results will
be analysed and conclusions regarding the algorithms’ performance will be drawn.
Deadline: Wednesday 11th March.

9. Easter vacation Write dissertation. This will be started early so that plenty of
time is left for exam revision. Deadline: Wednesday 15th April.

6 APPENDIX C. PROJECT PROPOSAL

10. Easter term weeks 0-2 Proof read dissertation and submission. Deadline:
Wednesday 6th May.

Bibliography

[1] ZHAO, B., XING, E. P. (2014) Quasi Real-Time Summarization for Consumer Videos
https://www.cs.cmu.edu/~epxing/papers/2014/Zhao_Xing_cvpr14a.pdf

[2] HU, W., et al (2011) A Survey on Visual Content-Based Video Indexing and
Retrieval IEEE Transactions on Systems, Man, and Cybernetics—Part C: Ap-
plications and Reviews 41 (6) http://www.dcs.bbk.ac.uk/~sjmaybank/survey%
20video%20indexing.pdf

7

https://www.cs.cmu.edu/~epxing/papers/2014/Zhao_Xing_cvpr14a.pdf
http://www.dcs.bbk.ac.uk/~sjmaybank/survey%20video%20indexing.pdf
http://www.dcs.bbk.ac.uk/~sjmaybank/survey%20video%20indexing.pdf

	Introduction
	Background
	Previous Work
	Project Aims

	Preparation
	The Problem
	Requirements Analysis
	Theoretical Background
	Importance Detection Strategies

	Video Files
	Video Coding Formats
	Output Write Strategies

	Web Platform
	Software Engineering
	Development Process
	Software Libraries
	Programming Languages
	Development Tools
	Version Control

	Summary

	Implementation
	High-Level Program Structure
	Unit Testing
	Input and Analysis
	Metadata
	Video Reader
	Importance Detection Strategies
	Processors
	Processor Manager

	Output
	Output Write Strategies
	Video Writer
	Output Manager

	Web Platform
	Summary

	Evaluation
	Videos Used in Evaluation
	Manual Evaluation
	User Study
	Types of Video
	Types of Question
	Participant Recruitment
	Ethics

	Results
	Best Output Write Strategy
	Best Importance Detection Algorithm
	Usefulness of the Summaries

	Threats to Validity
	Summary

	Conclusions
	Achievements
	Future Work
	Final Remarks

	Bibliography
	User Study Results Aggregation Script
	User Study Questions
	Bag Video
	Desk Video
	River Video

	Project Proposal
	Introduction, The Problem To Be Addressed
	Starting Point
	Resources Required
	Work to be done
	Success Criterion for the Main Result
	Possible Extensions
	Timetable: Workplan and Milestones to be achieved.

